Differential effects of stress on adult hippocampal cell proliferation in low and high aggressive mice.

نویسندگان

  • A H Veenema
  • E R de Kloet
  • M C de Wilde
  • A J Roelofs
  • M Kawata
  • B Buwalda
  • I D Neumann
  • J M Koolhaas
  • P J Lucassen
چکیده

Male wild house mice selected for a long (LAL) or a short (SAL) latency to attack a male intruder generally show opposing behavioural coping responses to environmental challenges. LAL mice, unlike SAL mice, adapt to novel challenges with a highly reactive hypothalamic-pituitary-adrenal axis and show an enhanced expression of markers for hippocampal plasticity. The present study aimed to test the hypothesis that these features of the more reactive LAL mice are reflected in parameters of hippocampal cell proliferation. The data show that basal cell proliferation in the subgranular zone (SGZ) of the dentate gyrus, assessed by the endogenous proliferation marker Ki-67, is lower in LAL than in SAL mice. Furthermore, application of bromodeoxyuridine (BrdU) over 3 days showed an almost two-fold lower cell proliferation rate in the SGZ in LAL versus SAL mice. Exposure to forced swimming resulted, 24 h later, in a significant reduction in BrdU + cell numbers in LAL mice, whereas cell proliferation was unaffected by this stressor in SAL mice. Plasma corticosterone and dentate gyrus glucocorticoid receptor levels were higher in LAL than in SAL mice. However, no differences between the SAL and LAL lines were found for hippocampal NMDA receptor binding. In conclusion, the data suggest a relationship between coping responses and hippocampal cell proliferation, in which corticosterone may be one of the determinants of line differences in cell proliferation responses to environmental challenges.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High neuronal/astroglial differentiation plasticity of adult rat hippocampal neural stem/progenitor cells in response to the effects of embryonic and adult cerebrospinal fluids

Hippocampal neural stem/progenitor cells (hipp-NS/PCs) of the adult mammalian brain are important sources of neuronal and gial cell production. In this study, the main goal is to investigate the plasticity of these cells in neuronal/astroglial differentiations. To this end, the differentiation of the hipp-NS/PCs isolated from 3-month-old Wistar rats was investigated in response to the embryonic...

متن کامل

Basal and stress-induced differences in HPA axis, 5-HT responsiveness, and hippocampal cell proliferation in two mouse lines.

To characterize individual differences in neuroendocrine and neurochemical correlates of stress coping, two lines of wild house mice were studied. These mice are genetically selected for high and low aggression and show distinctly different behavioral strategies toward environmental stimuli. Long attack latency (LAL), low aggressive mice display a passive coping style, whereas short attack late...

متن کامل

A Stereological Study on Hippocampal Subfields Following Administration of Methamphetamine in Male Mice

Background and Aims: This study examined sub-chronic effects of Methamphetamine (METH) on the stereological parameters in the Cornu Ammonis (CA) of the hippocampus in adult mice. Materials and Methods: Fifteen adult male mice, eight weeks old, were randomly divided into three groups: receive saline (controls), or low-dose (LD) 2.5 mg/kg METH, or high-dose (HD) 25 mg/kg METH, via daily intrap...

متن کامل

Spatial Memory, Motor Coordination, Cerebellar and Hippocampal Histoarchitectural Changes following Atropine Administration to Adult Mice

Atropine is a non-selective muscarinic receptor antagonist. In overdoses, atropine is poisonous. It is sometimes added to potentially addictive drugs, particularly anti-diarrhoea opioid drugs such as diphenoxylate or difenoxin. The aim of this study was to investigate spatial memory and motor changes associated with varying doses (5 and 10 mg/kg body weight) ingestion of atropine, as well as it...

متن کامل

P 67: The Role of Neuroinflammation in Dysfunction of Adult Hippocampal Neurogenesis

Neuroinflammation as a protective mechanism for repairing tissue damage in the central nervous system (CNS), has been classified into two types: acute and chronic. It is characterized by the activation of microglia and astrocytes and the increase levels of different chemokines and cytokines. Neuroinflammation can be harmful, and it is a common pathological feature in neurodegenerative and psych...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neuroendocrinology

دوره 19 7  شماره 

صفحات  -

تاریخ انتشار 2007